Skip to content

最小二乘目标函数为凸函数

证明:

M(s1+s22)c22Ms1c22+Ms2c222.

注意到

M(s1+s22)c22=(M(s1+s22)c)T(M(s1+s22)c)=(Ms1+Ms22c)T(Ms1+Ms22c)=14s1MTMs1+14s2MTMs2+12s1MTMs2(s1+s2)TMTc+cTc

Ms1c22+Ms2c22=(Ms1c)T(Ms1c)+(Ms2c)T(Ms2c)=s1MTMs1+s2MTMs22s1TMTc2s2TMTc+2cTc.

因此只需证明

14s1MTMs1+14s2MTMs2+12s1MTMs2(s1+s2)TMTc+cTc12s1MTMs1+12s2MTMs2s1TMTcs2TMTc+cTc.

消除公共项,只需证明

14s1MTMs1+14s2MTMs212s1MTMs20.

上面的不等式可以写成

(s1s2)TMTM(s1s2)0.

也即

(M(s1s2))T(M(s1s2))0.

得证。

Released under the MIT License.